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ABSTRACT    Ak, «. ,,   ^ .     .     ^ 

\Ve describe a projective algorithm for linear programming that shared features with 

Karmarkar's projective algorithm and its variants and with the path-following methods of 

Gonzaga, Kojhna-Mizuno-Yoshise, Monteiro-Adler, Renegar, Vaidya and Ye. It operates 

in a primal-dual setting, stays close to the central trajectories, and converges in OlynJ^) 

iterations like the latter methods. (Here n is the number of variables and L the input 

size of the problem.) However, it is motivated by seeking reductions in a suitable potential 

function as in projective algorithms, and the approximate centering is an automatic 

byproduct of our choice of potential function. 

il 



1. INTRODUCTION 

This paper is concerned with interior algorithms for the linear programming 

problem 

min g x 

(Pj) Ax * b 

x>0, 

k n where A is a real kxn matrix, b is in R , and g and x are in R . Apart from 

methods related to the ellipsoid algorithm, we can distinguish two classes of such methods: 

(i)  projective algorithms: Karmarkar's method [14] and its variants including the 

affine-scaling variant; and 

(ii) path-following algorithms, due to Gonzaga [12] , Kcjima, Mizuno and Yoshise 

[15,16], Monteiro and Adler [21,22], Renegar [23], Vaidya [28] and Ye [30]. 

We describe here a method that shares features with both approaches. 

Assume that the data A, b and g of (PJ are integer, and the input size is L. 

Then Karmarkar's algorithm can obtain within O(nL) iterations a sufficiently accurate 

solution that an exact solution can easih be deduced. The work required in each iteration 

is 0(n ) arithmetic operations in the basic version, or an average of 0(D) operations 

in the modified algorithm, giving a complexity of 0(n    L). Each iteration seeks a 

constant reduction in Karmarkar's potential function; after making a projective 

transformation, a step is taken in a direction that is the negative of the projected gradient 

of the potential function in the transformed space. This constant reduction implies the 

bound of 0(nL) for the number of iterations. In practice, far fewer iterations are 

required; it seems that O(L), or perhaps 0((^n n)L), suffice when a reasonable line 



search is performed. On the other hand, it is known that a reduction of the potential 

function greater than some fixed constant cannot always be achieved; see Anstreicher [2] 

and McDiannid [17]. 

Considering the infinitesimal step version of Karmarkar's algorithm and its 

variants, one is led to the study of paths or trajectories in the interior of the feasible region. 

These paths have been investigated by Bayer and Lagarias [5], Megiddo [18] and Megiddo 

and Shub [19]. They are closely related to the paths associated with the classical barrier 

function method of Frisch [11] and Fiacco and McCormick [10], and also to the notion of 

"analytic center" of Sonnevend [24]. Renegar [23] gave an algorithm using Newton's 

method to trace the path that required 0(Vn L) iterations, each needing 0(n ) 

arithmetic operations. Using Karmarkar's trick of solving approximate systems of 

equations and making rank 1 updates, Vaidya [28] showed that an average of 0(n    ) 

arithmetical operations per iteration sufficed, giving an overall complexity of 0(n L). 

Gonzaga [12] independently and simultaneously obtained the same result. All these 

methods operated in the primal space alone. 

Kojima, Mizuno and Yoshise [15] described a primal-dual interior algorithm that 

followed central trajectories in both the primal and dual feasible regions. This method 

used O(nL) iterations. Monteiro and Adler [21] gave a primal-dual method that required 

only O(^rL) iterations, and had a complexity of 0(n L). A similar complexity was 

established by Kojima et al. [16] for a path-following method for certain linear 

complementarity problems, including those arising from linear and convex quadratic 

programming. Monteiro and Adler also extended their method to one for convex quadratic 

programming with complexity CKn^L) [22]. All these methods work in a primal-dual 

setting, although there is no additional computation compared to a primal-only method. 

Finally, Ye [30] has given a primal-only convex quadratic programming algorithm that 

requires only OCVn L) iterations. 



We aim to shed light on these two classes of algorithms by introducing and 

analyzing a centered projective algorithm for linear programming. Like Ka.-mark&'-'s 

method, it is motivated by seeking a reduction in a suitable potential function, and the 

search direction is the negative of the projected gradient of such a function in a 

transformed space. Like the path-following methods, it requires only 0(Vn L) iterations. 

operates in a primal-dual setting, and stays close (automatically) to the central 
3 trajectories. We analyze our method with exact projections, so that it needs 0(n ) 

arithmetic operations at each iteration. However, we shall see that the direction generated 

coincides with those of Monteiro-Adler and Kojima et al., so their analysis shows that 
3 

inexact projections could be employed to give an overall complexity of 0(n L). We note 

that Ye and Todd [31] have shown that the path-following algorithms maintain a 

reasonable decrease in a certain potential function; this function differs slightly from the 

one chosen in this paper. 

One question we particularly wish to illuminate is the following. The projective 

methodb define a search direction, and the analysis then shows that a constant reduction in 

the potential function can be achieved; as we have indicated, typical behavior in practice is 

much more encouraging. On the other hand, the path-following methods try for an 

a priori determined reduction of (1 - 7/Vn) in the duality gap for some constant 7 and 

that is what they obtain   Can one hope to do better, and where does the >/n term come 

from? Some suggestions have been given in earlier papers; we hope our approach yields 

additional insight. 

The paper is organized as follows. In section 2 we describe Karmarkar's algorithm 

briefly and indicate why a constant reduction in potential is obtained. We also outline the 

step determination procedure of a path-following method. Section 3 reformulates the 

primal and dual problems in a symmetric way and introduces a combined primal-dual 

problem. 



In section 4 we state the potential functions with which we will be concerned and 

discuss scalings of the primal and dual variables. Section 5 computes the necessary 

projection matrix and hence the search direction used. We also relate this search direction 

to the step employed in path-following methods. As is perhaps not too surprising in view 

of earlier analyses by Gonzaga [13] and Mitchell and Todd [20], our direction is a linear 

combination of the same two directions that arise in path-following algorithms. However. 

we stress that the motivation behind it is completely different. 

Section 6 describes the algorithm which is analyzed in section 7. Finally section 8 

contains further discussion. 

2. AN OUTLINE OF PROJECTIVE AND PATH-FOLLOWING METHODS 

Our problem is 

min gTx 

(Pj) Ax = b 

x>0, 

where A is kxn, b a k-vector, and g and x lie in Rn. We assume 

(Al) (Pj) has a strictly positive feasible solution; 

(A2) The set of optimal solutions of (P.) is nonempty and bounded; and 

(A3) The matrix A has full row rank k. 

To describe Karmarkar's projective algorithm, we assume for simplicity that no 

optimal solutions lie in the relative interior of the feasible region of (PA that a strictly 

positive feasible solution is known, say x  = e, where e e Rn is a vector of ones, and that 

the optimal value of (P,) is zero. Then it can be shown that (P,) is equivalent to the 

homogeneous problem 



min gTx 

(HP^ (A,-b](^)=0 

x>0, ^>0, (x,O*0. 

For any problem (P), let F(P) denote the feasible region of (P) and F+(P) the set of 

strictly positive feasible solutions. We can evaluate any point (x,0 € F+(HP1) by 

Karmarkar's potential function 

^foO = (n+l^n gTx - E. ^n x^-tn ( 

=V°(^)+'n(^)- (21) 

Clearly, <t>,  is homogeneous of degree 0, and hence can be viewed as defined on positive 

rays, i.e., on certain points in projective space. 
k   k Karmarkar's algorithm generates a sequence {(x ,^ )} in FJHP^ starting with 

(x0,e0) = (e,l), with 

*1{xk+1,ek+1)<01(x
k,£k)-< (2.2) 

for some fixed positive e and all k. Without loss of generality, we can take ^   = 1, and 

then {x } is a sequence in F,(P1). We can then deduce from (2.2) that 

S^d^lexpl-^lgV (23) 

where e denotes the vector of ones in Rn. If F(P1) is bounded, we see that gTx 

converges linearly to the optimal value of zero. 



If the data A, b and g are integer and the total input size is L, (2.3) can be used 

to show that O(nL) iterations suffice to give an approximate solution from which an exact 

solution can be obtained by solving a system of equations. In general, O(nq) iterations 

reduce the objective function by a factor of 2^. 

We now describe bow the reduction in potential given by (2.2) is achieved. Let x 

in F,(P1) be given, and let H:=diag(x) be the diagonal matrix whose diagonal entries 

arc the components of x. Let g := Eg and A := AH, and consider the rescaled probelm 

mingTx 

(HFj) [A,-bl(^)=0 

X > 0,   ^ > 0,   (X,Ö r 0. 

in terms of the rescaled variables x = E   x, 1= $. It is easy to see that, if (x,0 and 

(x,|) correspond as above, then 

^(x,^) - fci det E = ^(x,!) 

:={n+l)tnfx.-L.inx.~inl (2.4) 
J J 

and that (x,l) corresponds to the transformed vector (e,l). From (2.4) it is sufficient tc 

obtain a constant reduction in ^,  from the solution (e,l). We do this by making a step in 

the direction given by the negative of the projected gradient of $,. We find 

V01 = V01(e,l) = 
/n+1 =    Q —- g-e 

g  e 
-1 

(2.5) 



If Pw denotes projection into the null space of a matrix M, then our direction is 

3:=-? (Ä,-b] ^1 

= -P[Ä,-b]P[eT4] 

n+1 
Ä  -b 
eT   1 

/ n+1, \ 
8 e 

(n (2.6) 

If we move from (e,l) to (e,l) + a8/||a||, we find 

^(6,1) + oÄ/\m = ^(e,!) + afr^/im + 0(a2) 

= ^(e,!) - a||a|| + 0(a2). (2.7) 

It is clear that a constant stepsize a can be chosen without violating positivity. Hence, 

since the higher order terms can be controlled, the reduction in ^ will be of the same 

order as the Euclidean norm of 3. In the proof of their lemma 3.1, Todd and Burrell [27] 

show that ||d|| > 1. This yields a constant decrease in ^, per iteration, and hence 

convergence in O(nL) iterations. Greater reduction in ^, and hence faster convergence, 

would follow if ||d|| could be shown to increase with n. We will return to this question in 

section 4. 

After making a step in projective space to get a new (x,Ö, we normalize to 

(x/|, 1) (note that ^ is unchanged), and then rescale to get our new feasible solution 

zx/l to (PA Karmarkar's algorithm iterates this procedure. 



An alternative method, the so-called affine variant (first proposed by Dikin [6] in 

1967; see also [7], Barnes [3] and Vanderbei, Meketon and Freedman [29]), works directly in 

the original affine space. The rescaled variable x = E~ x is moved from e in the 

direction 

ax=-pAg. (2.8) 

Once again, we can use a constant stepsize a in the update x«- e + Q3X/||3X|J, and this 

will yield a decrease proportional to ||3 || in the objective function value. However, no 

lower bounds on ||d || have been established and polynomial convergence has not been 

shown for this variant (and is believed unlikely; see Megiddo and Shub [19]). 

Before we turn to path-following methods, we remark on a drawback of the 

potential function $,. Assume that x is converging to the unique optimal solution x 

to (PA and assume that this is a nondegenerate basic feasible solution. Let /?(/?) index 

the basic (nonbasic) components of x*. Let g denote the reduced costs corresponding to 

the optimal basis, so that g. is positive for j 0 ft. Then 

01(x,l) = (n+l)/ngTx-5;jfnxj 

= (k+l)£ngTx+ £  MfiJr I"2  ^nxi 
jg^      y  xj f    je/?      J 

(there will be k basic indices); as x -• x*, each term ^n(gTx/Xj) > in g. (j G #) is 

bounded below, and each term ^n x. (j e ß) is converging to ^n x* > -«. Hence a 
J J 

constant reduction in ^ implies an average reduction of a factor (1 - 7/(k+l)) for some 

constant 7 in the objective function. However, this result is very dependent on primal 

and dual nondegeneracy. It is not clear that the factor n+1 multiplying in gTx gives 

the correct balance between reducing the objective function and staying away from the 



constraint boundaries; and finding the right balance might necessitate knowing the degree 

of primal and dual degeneracy at the solution. We will see that this disadvantage vanishes 

for our method. 

We now turn to an outline of path-following methods. We discuss a symmetric 

primal-dual variant, as in [21]. Associated with problem (P^) is the barrier function 

problem with parameter /i: 

min gTx - /* L £n x, 

(BPj) Ax = b 

x> 0; 

under our assumptions, this will have a unique solution x(/i) for each /* > 0, and x(/i) 

converges to an optimal solution of (P.) as /* -* 0+. The optimality conditions for 

(BPj), with Lagrange multipliers y, can be written as 

g-MX~1e-A1y = 0 

Ax =b 

where X denotes diag(x), and S below similarly denotes diag(s). Letting s := ßX    e. 

we can write these conditions as 

XSe - /ie = 0 (2.9a) 

Ax = b (2.9b) 

ATy + s = g (2.9c) 

x > 0, s > 0. (2.9d) 
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Thus y, with associate slack vector s, is an interior solution to the dual problem 

maxbTy 

(Dj) ATy + s = g 

s>0, 

and moreover the duality gap is gTx - bTy = xT8 -• eTXSe = nß. The equations (2.9) are 

also the optimality conditions for the barrier function problem 

max bTy + ^E^n s, 
J 

(BD^ ATy + s = g 

s >0, 

with unique optimal solution (y(/x),s(^)). Hence, solving (2.9) for a sequence of 

parameters ft approaching zero yields points on the curve {X(/J)} in the primal space and 

on the curve {(y(^),s(/i))} in the dual space. These are the central trajectories of Bayer 

and Lagarias [5] and the (central) pathways of Megiddo [18]. We call (x,y,s) or (x,s) 

centered if (2.9) holds for some //. 

Equation (2.9a) is nonlinear, so we must be content with approximate solutions. 

Assume we have a point (x,y,s) satisfying (2.9b)-(2.9d) with 

||XSe-Ce||<aC (2.10) 

where C :ä eTXSe/n and suitable 0 < a < 1; such a point we will call aonroximatelv 

centered. We then seek an approximate solution to (2.9) for some /i < C by taking a 

Newton step. The new point will be (x+d , y+d , s+d ) where the direction satisfies the x        y        s 
equations 
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Sdv + Xda = -{XSe - /«) 

Adx = 0 (2.11) 

ATdy + d8 = 0. 

It can be shown (see, e.g., Monteiro and Adler [21]) that the result is also approximately 

centered, with duality gap approximately n/i, if we choose /i = (l-7/>/n)C for some 

constant 7. 

Most of the cited papers give little or no motivation or justification for the choice of 

(i above. However, Gonzaga [13] in his closely-related primal-only method, shows in 
* —1 section 3.3 that such a fi gives a constant bound on ||X   d ||, thus ensuring that the 

new point is feasible. Kojima, Mizuno and Yoshise [15] set ß-ff( for some constant 

9 < 1 and find that they can only take a step size of order 1/n, resulting in O(nL) 

iterations. They also show (Theorem 2 and the following remark) that, even if one is 

exactly on the path {(x(/i), y(/i), s(/x))} and takes a step in the tangent direction for the 

maximum feasible distance, then the duality gap is reduced by at least the factor 

(1-1/vS). 

3. SYMMETRIC PRIMAL AND DUAL PROBLEMS 

In this section we reformulate (?,) and (D,) into symmetric forms, and define a 

symmetric combined primal-dual problem. Recall that we have 

mingTx 

(Pj) Ax = b 

x >0, 

satisfying (Al)-(A3). Since we assume (?,) feasible, b is in the range of A, so that we 

can write 



12 

b = Ah (3.1) 

for suitable h. then the dual can be written 

max hTATy 

(Dj) ATy + s = g 

8>0. 

We prefer to write this in terms of s alone. Thus let B be a matrix whose rows 

span the null space of A; by choosing a basis for this space we can assume that B is 

i *ü with full row rank t, with k+^ = n. Then 

ATy + s = g  or some y iff Bs = Bg 

and moreover, the objective function of (D,) can be written in terms of s alone since 

hTATy = gTh -hTs. Thus we can rewrite (P,) and (DJ as 

(P) 

(D) 

uiin gTx 

Ax = Ah 

x >o 

min hTs 

Bs = Bg 

s >0 

where the rows of A and B span complementary orthogonal subspaces of Rn, which we 

denote as 
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A x B. (3.2) 

The duality relation between (P) and (D) is easily deduced from the standard 

result: feasible solutions x and s have objective values satisfying 

gTx + hTs > gTh (3.3) 

and are optimal if and only if equality holds. Indeed, x-h and s-g lie in the null spaces 

of A and B respectively, and are therefore orthogonal, so 

gTx + hTs - gTh = xTs, (3.4) 

which is nonnegative for feasible x, s. 

The standard symmetric inequality-form linear programming problems are 

naturally included in our format above. If they are written as max cTx, Äx < b, x > 0 

and min bTy, ÄTy > c, y > 0, then we set 

A = (Ä,I),    B = (I,-ÄT) 

0 
g = (1) ^ h=UI (3-5) 

to get corresponding instances (P) and (D). 

We can combine (P) and (D) to get the primal-dual problem 

min gTx + hTs - gTh 

(PD) Ax - Ah = 0 

Bs- Bg = 0 

x > 0, s > 0 
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which has optimal value 0 when feasible. As stated, this problem is separable, but we 

may replace the objective function by xTs using (3.4). In this form, it is clear that (PD) 

is unaffected if we replace g by g and h by h where 

Ah = Ah and B| = Bg. (3-6) 

Indeed, we have the useful 

Lemma 1. Let (P) and (D) denote (P) and (D) defined using g and h in place of g 

and h, where (3.6) holds. Then (P) and (D) are equivalent to (P) and (D) in the 

sense that their feasible regions are unchanged and their objective functions the same up to 

additive constants. 

Proof. It is clear that the feasible regions are unchanged. Now (3.6) implies that 

g = g + ATu and h = h + BTv for some u,v. Thus, for any feasible x, 

gTx = gTx + uTAx « gTx + uTAh = gTx + (gTh - gTh) 

differs by a constant from gTx. Similarly, hTs differs by a constant from hTs for 

feasible s. 

We will use lemma 1 as follows; given (x,s) e F(PD), we can assume without loss 

of generality that g - s and h = x. 

Let us observe immediately one consequence of this. Suppose that x - s = e is 

feasible in (PD). This solution is also centered, since (2.9a) holds with ß = L Then we 

can take g = h = e also. The direction chosen by the affine algorithm (see (2.8)) is then 

d = 'V rpA o 

B il]- -v (3.7) 
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Recall that the difficulty with the affine variant was in bounding from below the norm of 

||dx||; even if -g were large (e.g., | = e), its projection dx into the null space of Ä 

could be small. Here this problem vanishes; since A x B, ^ + dg = -e a^d we can 

conclude that 

||d|| = Vn. (3.8) 

Note that centering alone is not enough in this analysis—we need also the primal-dual 

formulation. In computing d from (3.7), the increased dimension implies no increase in 

work; given d  = -P Ae, we find d = -Pge ^ -e "• dx, since 

PA + PB = I. (3.9) 

The importance of centering in the affine variant has been demonstrated also in Barnes and 

Jensen [4]. 

Since (PD) has optimal value 0, it is natural to consider its homogenization 

min gTx + hTs - gThr 

(HPD) Ax - Ahr = 0 

Bs - Bgr = 0 

x > 0, s > 0, r > 0 

(x, s, r) ^ 0. 

As for (HPj), we can view the feasible solutions of (HPD) as rays, i.e., as points in 

projective space. The relation equivalent to (3.4) for (x,s,r) 6 F(HPD) with r > 0 is 
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gTx + hT8-gThr = xTs/'-- (3-10) 

To conclude this section, we observe that our assumptions: 

(Al) (P) has a strictly positive feasible solution; 

(A2) The set of optimal solutions of (P) is nonempty and bounded; and 

(A3) The matrix A has full row rank k, 

ily imply (Bl) and (B2) below, and (B3) is without loss of generality: 

(Bl) (D) has a strictly positive feasible solution; 

(B2) The set of optimal solutions of (D) is nonempty and bounded; and 

(B3) The matrix B has full row rank t. 

Hence (PD) has a strictly positive feasible solution, i.e. F , (PD) # 0, and also 

F+(HPD) ^ e. 

4. POTENTIAL FUNCTIONS AND SCALING 

We associate with the homogeneous primal-dual problem the potential function 

^x,s,r) = yx,s,r; g,h) (4.1) 

:= (n+^n(gTx + hTs - gThr) - E fti x. - S fti s- - {p-Ti)in r 
J J 

on F . (HPD). Note that this is homogeneous of degree 0, and hence is defined on 

(positive) rays. Perhaps the most natural choice of p is n+1, leading to the potential 
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function introduced by Karmarkar [14]. See also Ye and Todd [31]. However, we will find 

it profitable to consider other values for p, in particular p~ Jv.. While it may seem 

strange to have a negative coefficient for In r in (4.1), we note that (3.10) implies 

^(x,s,r) = (n+p)^n xTs - S /n x- - £ fti Sj - 2p £n r 
J J 

= /^n(^) -S^n^1. (4.2) 

The first equation shows that any p > 0 is reasonable, while the second gives a natural 
T     2 interpretation to p. Indeed, x s/r   is the objective function of the unsealed solution 

(x/r, s/r) in F.(PD), while (x.S|/xTs) is a positive vector lying on the unit simplex. 

Hence p balances a term that measures the objective function with the barrier function 

that seeks to keep (x/r, s/r) centered in F.(PD). 

Our aim is to secure an appropriate decrease in 0 at each iterativ n. To this end 

we will work with scaled problems. 

Let H be a positive definite diagonal n»n matrix and 6 a positive scalar. Define 

the scaled data 

ä = ME, ß = m=rl 

(4.3) 

i = Eg, h = sr\. 

Then, in terms of the rescaled variables 

x= ÄE 1x,  S = ÄEs,  r= r (4.4) 
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we have the equivalent problem 

min gTx + hTS - gTfir 

(HPÜ) Äx - Afir=0 

fig - Bgr = 0 

x > 0, 5 > 0, r > 0 

(x, S, f) * 0. 

We let (FIT) denote the corresponding inhomogeneous problem, obtained by replacing r 

by 1 in (HPÜ). It follows from the definition (4.3) that 

Ä j. S; (4.5) 

  2 
also the objective function of (HPÜ) is 6   times that of (HPD) for corresponding points. 

If we set 

fe§,r) := yx,§,r; g,b) (4.6) 

Then we find 

o 
^(x,S,r) ss 0(x,s,r) + p tnS 

whenever the arguments correspond as in (4.4). Thus to reduce the original potential 

function, it suffices to reduce 0 sufficiently for some appropriately scaled problem. 
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We now describe a particularly useful rescaling. Suppose we have (x,s) e F+(PD). 

so that (x,s,l) 6 F . (HPD) with objective value xTs. Let 

C := xTs/n. (4.7) 

According to lemma 1, we may take g = s, h « x without changing the problems. 

We also suppose (x,s) is approximately centered in F,(PD), so that 

llXSe - Cell < a'C (4.8) 

for suitable 0 < a < 1. Now choose 

S = C~1/2 and H = (XS-1)1/2. (4.9) 

Then, with g = s, h = x, we find 

g = fi = 'C^iXS)1!2* =: e (4.10) 

and 

gTh = C'VxSe = n. (4.11; 

Since e is close to e, and our current point (x,s,l) has been rescaled to (e,e,l), 

we have simultaneously scaled the primal and dual problems reasonably well. At the same 

time, by employing a symmetric scaling for the primal and dual, we guarantee condition 

(4.5), which, as we shall see, is crucial. 
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5. PROJECTIONS AND THE SEARCG DTRECTION 

We will be working with the scaled problem (HPD) and the associated potential 

function ^. The scaling will usually be that at the end of section 4, so that g = h, but we 

first compute the direction in general, assuming only that 

gTB = n (5.1] 

for notational simplicity; this can always be achieved by a scalar parameter. We also 

assume that g and h have been adjusted if necessary so that our current solution is 

g 
. i 

(5.2) 

We first evaluate the gradient of the potential function at the current point. For a 

vector u = (u.) e RD, it is convenient to denote 
J 

u-1 := (uT1) (5.3) 

and to write u T for (u   )T. Then the gradient, using (4.2), is 

V^ V0(E,g,l) = 5±^ 
(1 

h _ 

k 2p  ) 

(5.4) 

The search direction we will employ is, as in projective methods for (P,), the projection of 
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-V<i> into the tangent space of the feasible region. Hence, with 

C:* 
Ä   0   -ÄE 

0   ß   -ßg 
(5.5) 

we seek 

d' := -Pc V^. (5.6) 

An important consequence of the primal-dual setting is that, with the scaling given at the 

end of section 4, d'  (or its modification d below) cannot be too short. 

Before computing d', we remark that, if the current point has g = h = e, r « 1, 

then the homogeneity of <j> implies (eT,eT,l)V0 = 0. Hence d' i3 also the projection of 

-V^ into the null space of 

Ä     0 -Ah] 

0     ß -ßg 

eT   eT 1 

and this direction is also appropriate if the "simplex constraint" eTx + eT5 + r = 2n+l is 

added to (HFÜ). A scalar multiple of d' is obtained if we project the negative gradient 

of the objective function into this same null space. However, if we work with V0, the 

extra appended row is unnecessary. Omitting the simplex constraint preserves the 

homogeneity of (HFÜ) and has been propounded strongly by de Ghellinck and Vial [8,9]. 

In our context, adding a row of ones changes the direction since the current solution is 

generally not x = S = e, r = 1. 
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We now need to compute P/s. An important fact which follows from (4.5) is that 

PÄ + Pß = 1' (5.7) 

we use this repeatedly. Let 

T:= 
Ä    0 
0    6 , u:= 

-fi 

-I , so C = [T,Tul. 

Then 

fPÄ    0 
PT= 

B 
, I-PT = 

fPß    0 

PÄ 
,  SO 

v:=(I-PT)u = 
' "Pß" ' 

-PÄ| 

Hence 

a; := (1 + v^)'1 = (1 + hTPöh + fPtff1. (5.8) 

Now from section 4.2 of [26] we obtain 

LsmmaJi- 

PC = 

r? A   0 

0      P 
0 

B 
0      0 

0 \ 
0 + u 3Äi 

fPgfi^ 

'Äi (5.9) 

where u is given by (5.8). 
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To compute 3'  in (5.6), we first calculate 

using (5.7), and 

(P6B1 
T  ( (1   ] 

PÄ«I E 

I   1   ) o ) 
= gTPßE + |TPÄE = gTE = n 

iPgfi rrfi'1 v 

pÄi 
1 

r1 

I2p   j 

= B    PgE + g   P^g + 2^ 

= n + p + a, where 

.—T c—fi 
ff:=P + g    PÄ^ + h    Pßh " (5.10) 

From (5.4), (5.6), (5.9) and the above, we find 

d' « -PCV^ = _S±£ 
n 

r 
\fki\ [P6hl 

T 

Pß6 + un PÄ« 
L I  o   ) l    , J 

' pÄr!v 

ps? 
0 

+ u<n+()+<T) 

fPgh^ 
pÄi 

i 

_    n-fp (Pä«1 lp*rl 1 [PßM 
Pßsl + Pß«-1 + Uff PAM 

I   o   ) I  o      ) i  ) 
(5.11) 

The direction d'  is appropriate to projective space, the domain of (HPD). It is 
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convenient to transform this direction back to an appropriate direction for the 

inhomogeneous problem (FD). If we move from our current point a step size x   in the 

direction d  = (dv,d0,äJ. we reach 
X     8     / 

= (1 + x'dp 

where 

X'=X lil +X ^) and 

d «3 - 3 E, x      x      r ' 

/ / 

\-\-iJ. 

Given the homogeneity of ^, it is therefore equivalent to move a step size x in the 

direction 

a = 
iarj 

n 
(PÄ«1 

pßE + Hi1 + U}<7 
f-PA£ 1 
-pS8 

i   0     ' o      J 0    ' 

(5.12) 

We now note the simplifications that occur when, as in (4.10), g = h = e. Then, 

from (5.1), 
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and clearly 

eTe = n 

g^g » n. 

Hence from (5.8) 

.Tn    Sv-1 xTx^-l w = (1 + gTPÄg + g^ge)"1 * (1 + gTgr1 = (n+1) x-1 

and from (5.10) 

£—T t—T x—T~ a = p + e   P^e + e   Pgg -n = p + g   g-n = p 

Hence, 

(? 
a = -{i+0) pgg 

fPÄe 
PB§ 

-1 x 
-I (5.13) 

where 

,/, -   2n-H  n (5.14) 

Again, if e is close to e and a suitable value of 0 is chosen, our primal—dual setting 

assures us that d cannot be too small. Further, there is no computational expense for this 

increased dimensionality; if 

i :=-il+ip)e + e l. (5.15) 

then 

ax=pÄfanda5 = f-ax. (5.16) 
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To conclude this section, we relate our direction 3 in (5.13) to those generated by 

path-following methods. Consider equations (2.11). If we scale as at the end of section 4. 

we can rewrite these equations in terms of 

ax Ä E~ldx' as = ^s- 

The last equation of (2.11) is equivalent to Bd » 0. We thus obtain 

(XS)1/2(aY + ae) = -5(XSe-/ie) x      s 

Äax.o 

ßa5=o. 

The first equation can be written 

äx + a8 = -e + (/i/Öe"1, "x "i- u8 = -e f \W <>K 

and so 

ax = PÄf''as = PBf'' (517 

with 

f'=-€ + (M/0e l- (5.1S) 

The similarity to (5.15), (5.16) is striking. Indeed, if V is chosen so that \ + ip= (/p, 

then the two directions coincide. If /i=C(l-7/Vn) for some constant 7, this suggest 

^ = T/Jn for some constant y. Our choice of ip will turn out to have this form, but it 

is motivated by obtaining suitable reductions in the potential function 0. 
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The analysis above is appropriate for the symmetric primal-dual algorithms of 

Monteiro and Adler [21] and Kojima, Mizuno and Yoshise [16]. Indeed, equations (2.11) 

are exactly equivalent to equations (3.1) of [21] with X s X, Z s S and corresponding 

changes of notation. Kojima et al. [16] deal with the linear complementarity problem 

w = Mz + q where M is positive semi-definite. Given the linear programming problems 

:T-    J T- max S x, Ax < b, x > 0, min by, A y > c, y > 0, as above (3.5), we set 

«.; ,,-m.M= r o -A 

ÄT    0 
and q *= 

-c 

to get the corresponding linear complementarity problem, where ü and v are primal and 

dual slack vectors. Then if (P) and (D) are defined using (3.5), with 

x = :IH;I- 
it is easy to see that Kojima et al.'s equations (2.1), which in the notation above are 

Wdz + Zdw = ZWe-/ie,   dw = Mdz 

can be rearranged to give our equations (2.11). 

Finally, Gonzaga's direction dN in his algorithm 4.2 [12] is of similar form if his 

scaling vector z is taken as ( ' (XS   ) ' e « x. Indeed, in his notation 

aN = -p(i;/<k+l-Y"let- 

and with the choice of z above, P - PA ^d y = Z   x = e, so Y   e = e    . Also, 
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C as Zg, and by the proof of lemma 1 its projection is the same as that of (e.   Hence 

-1> dNÄPÄHCAk+1)« + s   ) 

which relates directly to (5.15H5.16). 

6. THE ALGORITHM 

We now have all the ingredients for our algorithm. We assume we have available a 

point (x ,s ) € F . (PD) that is approximately centered, so that 

HxVe-^ellsaC0, (6.1) 

where C - eTX S e/n, for suitable 0 < a < 1. Obtaining such a point has been 

discussed in [12,15,16,21-23,28]. We generate a sequence {(xk,sk)} £ F+(PD) as follows. 
k k k k Given (x ,s ), set x = x , s = s   and define the scaled data by (4.3), with 6 

k  k and E given by (4.9). Then (x ,s ) is transformed into (e,e). We choose d by (5.13) 

and set 

x 

S 
+ x 

(a \ x 

s  ' 
(6.2) 

for appropriate x > 0. Now we unscale the point to get 

/ xk+l x 

„k+1 

f^Ex 

r1 E-h 
(6.3) 

We aim to prove 
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2n+2 /r .«J  ..._   2 Theorem 1. Let p = ggf Vn and 0 = -^ . Let a « 1/3 and x = 1/15. Then if 

(x0,80) satisfies (6.1), the algorithm above is well-defined and generates a sequence of 

points satisfying 

HxVe-^elUa^ (6.4) 

where ^ = eTXkSke/n and 

^(xk+1,8k+1,l)<0(xk,8k,l)-/J (6.5) 

where /? = 1/9. 

The inequality (6.5) implies the desired complexity of the algorithm. Indeed, 

from (4.2) 

0(x,s,l) = ^n(xTs)-E./n-J-i 
J v   a 

0  0 k   k and (6.1) shows that the last term is bounded for (x ,s ) (and by (6.4) for all (x ,s )). 

Hence, with /> ~ ^, (6.5) gives 

Corollary 1. In 0(^i L) steps, the algorithm above yields 

eTXkSke < 2"LeTX0S0e. (6.6) 

In the integer model, a suitable choice for (x ,s ) will then show that 0(Vn L) 

steps suffice to give a solution from which optimal solutions to (P) and (D) can be 

recovered. See [12,15,16,21-23,28]. Here L is the input size of the instance. 
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In fact, our analysis below will show (6.6) directly, by proving that the objective 

function decreases by a factor (1 - 7/Vn) for constant 7 at each iteration. However, 

since our algorithm is motivated by decreasing the potential function 0, we prefer to use 

it as a criterion. The approximate centering shown by (6.4) is an automatic byproduct of 

the method. 

Towards proving theorem 1, we note that conditions (6.4)-{6.5) are invariant under 

scaling of the problem, so that it is sufficient to show that the move from (e,e) to (x,s) 

preserves (6.4) and yields the potential function reduction (6.5). Removing the overbars 
9 

for notational simplicity, we only need to establish the following (here e    denotes the 

vector with (e2). = (e.)2): 
J J 

Lemma 3. Let />, Vi Of, x and /? be as in the theorem. Suppose 

|e2-e|| < a. (6.7) 

If 

r d. 
d = = -(1+^) 

V 
V PBe 

0 

-1 X 

-1 
(6.S) 

and 

x 
s 

r d. 

■' i+x 

then 

llXSe - Ce|| < aC (6.9) 
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(x,s,l)<^(e,e,l)-/?. (6.10) 

7. ANALYSIS 

This section proves lemma 3. We carry out the analysis as far as possible using 

general values for p, ^, a, x *&& ß- This will help us discuss the choice of p, V made. 

Only when we complete the proof of lemma 3 will the specific values be used. However, we 

assume throughout that x >8 such that (x,s) > 0. Since (e,e) is feasible and d  (d ) in 

the null space of A (B), this assures us that (x,s) is feasible also. 

We now calculate some key quantities. As usual, we denote by D    and D 

diag(dv) and diag(d0) respectively, and E denotes diag(e). 
X ' 9 

LsmmflLi. We have 

-V^Td = p0 + e^e"1 - n, 

dTd = n/ + e'V1 - n, 

C := xTs/n = l-x^ and 

XSe - Ce = (1 - x(l+V'))(e2-e) + X2DxDse. 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

Proof.  In the present setting, (5.4) simplifies to 

Y      n 
l 2p   J 
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Then (7.1) and (7.2) are straightforward consequences of (6.8), using P^ "^ ^B =: ^ 

repeatedly. 

Next note that dlda = 0, since d   and d. lie in the null spaces of A and B 
X  9 X 8 

respectively, while 

dx + d8 = -(l+V)e + e"1. (7.5) 

Hence 

C = (§ + XciY)T(e + xdj/n 

= (eTe + xeT(dx + ds))/n 

= (n + ;rt-n(l+^) + n)/n 

= 1 - X^ 

giving (7.3), and 

XSe - (e = (E + xDx){E + xDs)e - Ce 

= e2 + xE(dx+dg) + x
2DxDge- (l-xV)e 

= e2 + xMl+^e2 + e) + ;t2DxDse- (l-^)e 

= (l-X(l+^))(e2~e) + ^2DxDse, 

establishing (7.4). 

To use Lemma 4, we need to bound e Te   . 
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LemmaS. If 

Ie2-e|| < a 

with a < 1/3, then 

n < e^e"1 < n+1. (7.6) 

Proof. For the lower bound, note that S^e = n, while ||e|| = Ja. Hence ||e    || > Jfi. 

Now since S > 0, we certainly have 

le-ell < Q 

also. So ||e   - e|| = ||E   (e - e)|| < j— ||e - e|| < y^, since each diagonal entry of 

ET1 is at most (1 - a)"1. Hence He-1- e|| < a + ^ < 1 since a < 1/3. Finally 

He"1!!2 = lie + (e-1- e)!!2 = ygy2 + He"1- e!|2 < n+1 since ^(e"1- e) = n-n = 0. 

Finally, we need 

Lemma 6. If 1 - a - *||d!| > 0, then 

^(x,s,l) < 0(e,e,l) + XV^d + g^p-L-pp ^Vd. (7.7) 

Proof. We start with 

A2     A3 

/n(l+A) = A-^- + ^- ... 
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if |A| < 1. Now suppose |€2-1| < a (so |f-l| < a also) and |^| < \\d\\. Then 

/n(€ + ^as^ + <n(l + x|) 

€      2(1 - xlfll)? 

Now if e < 1, then 

{1-X\~\)<2=<2-X\0\(>e2-X\0\ 

>l-a-xl|cl||, 

while if e > 1, we have 

(l-*l7l)<2>l-xl*l<>l-x|0|(l + a) 

>l-a-^||d|| 

since ,YI^I < 1- Hence 

(n{< + Xe)>(n( + Xl- ^.^^i^ X2<?- (7-8) 

Note that the first two terms are the first-order Taylor approximation of ^n(f + \^). 

Now consider 

fsT      ,   -T. 0(x,s,l) = p /n(e x + e s - n) - E ^n x. - E ^n s.. 
J J 

The first term is concave, hence its first-order Taylor approximation is an overestimate. 
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For the remaining terms we use the approximation given by (7.8), where e denotes a 

component of e and 6 a component of d   or d . Since the sum of ail such (r is dTd. 

the result follows. 

Proof of Lemma 3. By lemmas 4 and 5, 4 < dTd < 5 and so ||d|| < 5/2 and 1 - a - xl|d|| 

^l-i-yi-n-^. Thus each component of x and of s is positive. Also, 

X(l + V) < li so that;< aSain by lemma 4 

llXSe - Cell < (1 - X(l + m\\£ - ell + X2dTd 

<(l-^)a+x(xciTd-a) (7.9) 

< K 

Finally, by lemmas 4 and 6 and the above estimates, 

1 2   T 0(x,s,l) < ^(e,e,l) + xV^Td + ^^--g-^p^ x
zdTd 

<^,e,l)-!V2+   *     (^-S 

= 0(e,e,l)-g. 

This completes the proof. 

8. DISCUSSION 

We now discuss the choice of parameters made. From (5.14), ^ is about 2p/n, so 

to achieve a good reduction in the potential function we would like -V^Td and hence p 

large. To maintain feasibility, we need x = 0(l/||d||). Let us examine the consequences 
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of choosing p of order n. Then ^ is of order 1, -V^Td of order n, and ||d|| of order 

Vn. Hence x is of order 1/Vn, and the first order change in ^ of order >/n. Moreover, 

(7.7) shows that the error in this first-order estimate is of order 1. Hence we can achieve 

a decrease in <t> of order -Jü (see also Ye and Todd [31]). This would seem to imply a 

complexity of 0(Vn L), since with p of order n we need a reduction of order n in ^ to 

reduce the objective function by a constant; this bound also appears to follow from the 

objective function reduction in (7.3). However, such a choice of p does not seem to allow 

the algorithm to remain approximately centered, and hence the improvement cannot be 

sustained. While the first-order term in (7.4) is very attractive, the second-order term 

seems to be too large. Indeed, (7.9) shows that we require x^d — o < 0, and so x 

should be 0(l/||d|r). This would give x of order 1/n and hence only a constant 

reduction in ^ and a reduction in the objective function of (1-7/n) for constant 7, as in 

Karmarkar's algorithm or Kojima et al. [15]. 

On the other hand, if p is smaller than order Vn, then -V^Td is smaller than 

order 1, and we may not be able to achieve a reduction in ^ due to second order terms. 

Our choice of p as approximately Vn balances these requirements nicely. 

We must mention a disadvantage of our choice of parameters. One of the goals of 

our research was to develop an algorithm that required only Vn L iterations as in the 

path-following methods and yet gave the possibility that line searches could reduce the 

complexity further. While line searches are possible in the path-following algorithms [12], 

the direction is determined directly or indirectly by seeking a reduction of the objective 

function by a factor (1 - 7/Vn) for constant 7, and it is not clear that these directions 

are good for longer steps. Our directions arise from seeking reductions in a potential 

function, and one could hope that line searches would be more effective. 

Unfortunately, while feasibility demands only x to be 0(l/||d|| ), which might be 

of order Vn, the approximate centering places more stringent conditions. Indeed, (7.4) 
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suggests that we must maintain l-x(l+^) positive (or not too negative) which limits x 

to order 1. It may well be that the inherent curvature of the "cone" of approximate centers 

does not allow line searches to be effective. Then either one must establish a method that 

successfully moves further down the path of centers, or employ a higher-order predictor of 

the path, as suggested by Bayer and Lagarias [5] and Adler, Karmarkar, Resende and 

Veiga [1]. These remarks suggest that the bi-directional search proposed by Tanabe [25] 

and Gonzaga [13], which amounts to varying 0 in the definition of the direction d of 

(5.13), may not be as successful as hoped. 

Finally, while we hope that our framework has shown the advantages oi 

primal-dual setting and approximate centering in projective algorithms, the true 

worst-case complexity of Karmarkar's primal-only projective algorithm is still unknown. 

Are there examples requiring O(nL) iterations, or can the improved behavior observed in 

practice be proved to hold in general? An interesting discussion relating to this question 

can be found in McDiarmid [17]. 
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